Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(5): 442, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602562

RESUMO

The Burabay State National Natural Park is a national park of the great natural and historical values located in the north of Kazakhstan, which has been exposed in recent years to significant anthropogenic impact. The moss biomonitoring was performed in the Borovoye resort community, an important tourist destination in the national park, to identify the level of air pollution. Mosses collected at 29 locations were subjected to neutron activation analysis to determine 36 elements and additionally to ICP-OES to detect the level of Cu and Pb. Factor analysis was applied to check if there are any associations between identified elements and to link them with possible emission sources. According to contamination factor and pollution load indices the investigated area belongs to three classes of pollution: unpolluted, suspected and moderate. Potential ecological risk index calculated for selected elements revealed harmless risk to human health. The level of element obtained in Burabay State National Natural Park was compared with the data available for other national parks.


Assuntos
Poluição do Ar , Briófitas , Humanos , Biomarcadores Ambientais , Parques Recreativos , Cazaquistão , Monitoramento Ambiental
2.
Arch Environ Contam Toxicol ; 86(2): 152-164, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38329491

RESUMO

Active moss biomonitoring, the so-called moss bag technique, widely applied in many countries, for the first time, was applied to assess the air quality in Ulaanbaatar (Mongolia). Moss bags with Sphagnum girgensohnii Russow were exposed in triplicate in three different periods: December-February, March-May, and December-May at 13 governmental air quality monitoring stations located in the vicinity of thermal power plants and residential areas. The plant tissue content of Al, Ba, Co, Cd, Cr, Cu, Fe, Mn, P, Pb, Sr, S, V, As, and Zn was determined using inductively coupled plasma-optical emission spectrometry, and a direct mercury analyzer was used to determine the Hg content. The samples in residential areas and near thermal power plants that were exposed for 3 months in winter and for 6 months (winter to spring) were characterized by the highest accumulation of the elements. In the moss bags exposed during spring, maximum accumulation of the determined elements was noted in residential areas and near main roads. Regardless of the exposure time and duration, the highest accumulation of Al, Fe, and V was determined at Dambadarjaa air quality station located near a highway and of Hg near the Amgalan power plant. Significant differences in element accumulation between seasons were observed, thus, the accumulation of Al, Ba, As, Co, Cr, Fe, Pb, V, and Zn was higher in spring, while P and S had higher content in the moss samples exposed during winter. The accumulation of elements over the 6-month exposure period was 1.1-6.7 times higher than that of the 3-month periods. Thus, the 6-month exposure can be considered a reliable deployment period as it ensures an adequate signal in terms of enrichment of pollutants. Factor analysis was applied to highlight the association of elements and to link them with possible sources of emission. Three factors were determined, the first one included Al, As, Ba, Co, Cr, Fe, Mn, Pb, Sr, and V and was identified as a geogenic-anthropogenic, the second (Cu, P, and S) and third (Cd and Zn) factors suggested anthropogenic origin. The Relative accumulation factor and enrichment factor were calculated to evaluate the level of air pollution and possible element sources. Considerable contributors to air pollution were Zn, Fe, As, V, Cr, and Al, which may originate from airborne soil particles of crustal matter or transport, as well as coal combustion for heating and cooking.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Briófitas , Mercúrio , Metais Pesados , Poluentes Atmosféricos/análise , Cádmio/análise , Chumbo/análise , Monitoramento Ambiental/métodos , Briófitas/química , Poluição do Ar/análise , Mercúrio/análise , Metais Pesados/análise
3.
Microorganisms ; 12(1)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38257949

RESUMO

Rare-earth elements are released into the aquatic environment as a result of their extensive use in industry and agriculture, and they can be harmful for living organisms. The effects of holmium(III), erbium(III), and gadolinium(III) when added to a growth medium in concentrations ranging from 10 to 30 mg/L on the accumulation ability and biochemical composition of Arthrospira platensis were studied. According to the results of a neutron activation analysis, the uptake of elements by cyanobacteria occurred in a dose-dependent manner. The addition of gadolinium(III) to the growth medium did not significantly affect the amount of biomass, whereas erbium(III) and holmium(III) reduced it up to 22% compared to the control. The effects of rare-earth elements on the content of proteins, carbohydrates, phycobiliproteins, lipids, ß carotene, and chlorophyll a were evaluated. The studied elements had different effects on the primary biomolecule content, suggesting that holmium(III) and erbium(III) were more toxic than Gd(III) for Arthrospira platensis.

4.
Nanomaterials (Basel) ; 13(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37836339

RESUMO

Terbium is a rare-earth element with critical importance for industry. Two adsorbents of different origin, In2O3 nanoparticles and the biological sorbent Arthrospira platensis, were applied for terbium removal from aqueous solutions. Several analytical techniques, including X-ray diffraction, Fourier-transform infrared spectroscopy, and scanning electron microscopy, were employed to characterize the adsorbents. The effect of time, pH, and terbium concentration on the adsorption efficiency was evaluated. For both adsorbents, adsorption efficiency was shown to be dependent on the time of interaction and the pH of the solution. Maximum removal of terbium by Arthrospira platensis was attained at pH 3.0 and by In2O3 at pH 4.0-7.0, both after 3 min of interaction. Several equilibrium (Langmuir, Freundlich, and Temkin) and kinetics (pseudo-first order, pseudo-second order, and Elovich) models were applied to describe the adsorption. The maximum adsorption capacity was calculated from the Langmuir model as 212 mg/g for Arthrospira platensis and 94.7 mg/g for the In2O3 nanoadsorbent. The studied adsorbents can be regarded as potential candidates for terbium recovery from wastewater.

5.
Environ Res ; 238(Pt 1): 117137, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37714364

RESUMO

The moss-bag technique has been used for many decades to monitor outdoor pollution. More recently, however, the method has been used to monitor indoor air pollution (IAP), as humans spend the majority of their time indoors. The purpose of the research conducted was to evaluate indoor air pollution using active moss biomonitoring. Pleurozium schreberi moss bags were exposed for two seasons (summer and winter), hanging over tile stoves and coal stoves. The selected elements: Al, Cu, Cd, Co, Pb, Zn, V, Ba, Cr, Fe, Mn, Sr, P, Ni, and S were determined by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) and, for Hg, by a direct mercury analyzer. The study found the exposure season affected the concentrations of selected elements in 62.5% of cases, and their source was identified. The average concentrations of Co, Ba, Cr, and Sr were higher, and statistically significant, in winter, after a 12-week exposure period of the mosses, regardless of the type of heating or cooking stove owned. The higher phosphorus concentrations obtained in summer indicate physiological stress caused by unfavorable winter exposure conditions. In the future, the number of species used to assess indoor air pollution should be increased and the range of pollutants expanded, along with the identification of their sources, taking residents' lifestyles into account.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Briófitas , Mercúrio , Metais Pesados , Humanos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Briófitas/química , Poluição do Ar em Ambientes Fechados/análise , Poluição Ambiental , Metais Pesados/análise
6.
Materials (Basel) ; 16(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37687556

RESUMO

Rapid technological, industrial and agricultural development has resulted in the release of large volumes of pollutants, including metal ions, into the environment. Heavy metals have become of great concern due to their toxicity, persistence, and adverse effects caused to the environment and population. In this regard, municipal and industrial effluents should be thoroughly treated before being discharged into natural water or used for irrigation. The physical, chemical, and biological techniques applied for wastewater treatment adsorption have a special place in enabling effective pollutant removal. Currently, plenty of adsorbents of different origins are applied for the treatment of metal-containing aqueous solution and wastewater. The present review is focused on mesoporous materials. In particular, the recent achievements in mesoporous materials' synthesis and application in wastewater treatment are discussed. The mechanisms of metal adsorption onto mesoporous materials are highlighted and examples of their multiple uses for metal removal are presented. The information contained in the review can be used by researchers and environmental engineers involved in the development of new adsorbents and the improvement of wastewater treatment technologies.

7.
Materials (Basel) ; 16(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37763459

RESUMO

The intensive development of industry and agriculture caused by high population growth results in the release of large volumes of wastewater containing organic and inorganic pollutants into the environment [...].

8.
Mar Pollut Bull ; 194(Pt B): 115346, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37536080

RESUMO

The Dispersal profile of the radioisotopes (226Ra, 232Th, 235U, 40K, 137Cs) along with potentially toxic elements (Cd, Co, Cr, Cu, Ni, Pb, V, Zn, and Hg) in the sediments around the Novaya Zemlya was determined. The task was fulfilled with the aid of HPGe gamma spectrometry, inductively coupled plasma optical emission spectroscopy, DMA-80 Direct Mercury Analysis System, X-ray diffraction and statistical tools. At most of the locations, the radionuclides activity was higher than the world average activity concentration for the respective nuclei, 40K being the most abundant. From all the potentially toxic elements detected, Cr and Ni were usually observed on higher levels compared to their background values, indicating the probability of the detrimental biological effects. Thus, the present situation at the studied area might be a threat to the neighboring marine life.


Assuntos
Mercúrio , Metais Pesados , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Metais Pesados/análise , Mercúrio/análise , Espectrometria gama , Sedimentos Geológicos/química , Medição de Risco , China , Poluentes Químicos da Água/análise
9.
Microorganisms ; 11(8)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37630569

RESUMO

Dysprosium is one of the most critical rare earth elements for industry and technology. A comparative study was carried out to assess the biosorption capacity of cyanobacteria Spirulina platensis and yeast Saccharomyces cerevisiae toward dysprosium ions. The effect of experimental parameters such as pH, dysprosium concentration, time of contact, and temperature on the biosorption capacity was evaluated. Biomass before and after dysprosium biosorption was analyzed using neutron activation analysis and Fourier-transform infrared spectroscopy. For both biosorbents, the process was quick and pH-dependent. The maximum removal of dysprosium using Spirulina platensis (50%) and Saccharomyces cerevisiae (68%) was attained at pH 3.0 during a one-hour experiment. The adsorption data for both biosorbents fitted well with the Langmuir isotherm model, whereas the kinetics of the process followed the pseudo-second-order and Elovich models. The maximum biosorption capacity of Spirulina platensis was 3.24 mg/g, and that of Saccharomyces cerevisiae was 5.84 mg/g. The thermodynamic parameters showed that dysprosium biosorption was a spontaneous process, exothermic for Saccharomyces cerevisiae and endothermic for Spirulina platensis. Biological sorbents can be considered an eco-friendly alternative to traditional technologies applied for dysprosium ion recovery from wastewater.

10.
Nanomaterials (Basel) ; 13(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37299657

RESUMO

The application of metal nanoparticles in industry and medicine results in their release into the environment, which can have a negative impact on human health. The effects of gold (AuNPs) and copper (CuNPs) nanoparticles at the concentration range of 1-200 mg/L on parsley (Petroselinum crispum) under conditions of root exposure and their translocation in roots and leaves were investigated in a 10-day experiment. The content of copper and gold in soil and plant segments was determined using ICP-OES and ICP-MS techniques, while the morphology of nanoparticles was analyzed using transmission electron microscopy. Differences in the nanoparticle uptake and translocation were observed: CuNPs mainly accumulated in soil (4.4-465 mg/kg), while accumulation in the leaves were at the control level. AuNPs mainly accumulated in soil (0.04-108 mg/kg), followed by roots (0.05-45 mg/kg) and leaves (0.16-53 mg/kg). The influence of AuNPs and CuNPs on the biochemical parameters of parsley was on the content of carotenoids, the levels of chlorophyll, and antioxidant activity. Application of CuNPs even at the lowest concentration led to a significant reduction in carotenoids and total chlorophyll content. AuNPs at low concentrations promoted an increase in the content of carotenoids; however, they also significantly reduced it at concentrations higher than 10 mg/L. To our knowledge, this is the first study of the effect of metal nanoparticles on parsley.

11.
PLoS One ; 18(5): e0285306, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37200270

RESUMO

Centaurium erythraea (Gentianaceae) is a medicinal plant species with therapeutic potential officially listed in the pharmacopoeias of many European, Asian and American countries. It has had many uses in natural medicine since ancient times and it is collected mostly from wild populations. The aim of this study is to investigate the trace element composition of C. erythraea using instrumental neutron activation analysis (INAA). The results of the performed investigations show that INAA has proved to be an efficient analytical technique for the determination of trace elements in medicinal plants. The studied plant contains elements important to the human diet and metabolism that are needed for growth, development and the prevention and curing of disease. A comparison with the reference levels of elements for plants shows that the concentrations of most elements in C. erythraea collected from all types of sites exceed those regarded as the reference. Compared to the values of the elements in C. erythraea from rural areas (LP), the concentrations of most of the investigated elements in C. erythraea collected from the lignite basin, urban areas and in the vicinity of the A4 highway (MP) were significantly higher. The results obtained can be used for control and monitoring in the production of pharmaceuticals based on natural medical plants.


Assuntos
Centaurium , Plantas Medicinais , Oligoelementos , Humanos , Oligoelementos/metabolismo , Centaurium/metabolismo , Polônia , Poluição Ambiental
12.
Int J Mol Sci ; 24(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37240304

RESUMO

The influence of gold nanoparticles after their prolonged oral administration to mice (during pregnancy and lactation) on spatial memory and anxiety levels in offspring was investigated. Offspring were tested in the Morris water maze and in the elevated Plus-maze. The average specific mass content of gold which crossed the blood-brain barrier was measured using neutron activation analysis and constituted 3.8 ng/g for females and 1.1 ng/g for offspring. Experimental offspring showed no differences in spatial orientation and memory compared to the control, while their anxiety levels increased. Gold nanoparticles influenced the emotional state of mice exposed to nanoparticles during prenatal and early postnatal development, but not their cognitive abilities.


Assuntos
Nanopartículas Metálicas , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Humanos , Animais , Camundongos , Ouro , Efeitos Tardios da Exposição Pré-Natal/psicologia , Aprendizagem em Labirinto , Cognição
13.
Bioengineering (Basel) ; 10(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37106585

RESUMO

Yeast Saccharomyces cerevisiae may be regarded as a cost-effective and environmentally friendly biosorbent for complex effluent treatment. The effect of pH, contact time, temperature, and silver concentration on metal removal from silver-containing synthetic effluents using Saccharomyces cerevisiae was examined. The biosorbent before and after biosorption process was analysed using Fourier-transform infrared spectroscopy, scanning electron microscopy, and neutron activation analysis. Maximum removal of silver ions, which constituted 94-99%, was attained at the pH 3.0, contact time 60 min, and temperature 20 °C. High removal of copper, zinc, and nickel ions (63-100%) was obtained at pH 3.0-6.0. The equilibrium results were described using Langmuir and Freundlich isotherm, while pseudo-first-order and pseudo-second-order models were applied to explain the kinetics of the biosorption. The Langmuir isotherm model and the pseudo-second-order model fitted better experimental data with maximum adsorption capacity in the range of 43.6-108 mg/g. The negative Gibbs energy values pointed at the feasibility and spontaneous character of the biosorption process. The possible mechanisms of metal ions removal were discussed. Saccharomyces cerevisiae have all necessary characteristics to be applied to the development of the technology of silver-containing effluents treatment.

14.
Materials (Basel) ; 16(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37110040

RESUMO

Indium is an extremely important element for industry that is distributed in the Earth's crust at very low concentrations. The recovery of indium by silica SBA-15 and titanosilicate ETS-10 was investigated at different pH levels, temperatures, times of contact and indium concentrations. A maximum removal of indium by ETS-10 was achieved at pH 3.0, while by SBA-15 it was within the pH range of 5.0-6.0. By studying kinetics, the applicability of the Elovich model for the description of indium adsorption on silica SBA-15 was shown, while its sorption on titanosilicate ETS-10 fitted well with the pseudo-first-order model. Langmuir and Freundlich adsorption isotherms were used to explain the equanimity of the sorption process. The Langmuir model showed its applicability for the explanation of the equilibrium data obtained for both sorbents, the maximum sorption capacity obtained using the model constituted 366 mg/g for titanosilicate ETS-10 at pH 3.0, temperature 22 °C and contact time 60 min, and 2036 mg/g for silica SBA-15 at pH 6.0, temperature 22 °C and contact time 60 min. Indium recovery was not dependent on the temperature and the sorption process was spontaneous in nature. The interactions between the indium sulfate structure and surfaces of adsorbents were investigated theoretically using the ORCA quantum chemistry program package. The spent SBA-15 and ETS-10 could be easily regenerated by using 0.01 M HCl and reused with up to 6 cycles of adsorption/desorption with a decrease in the removal efficiency between 4% and 10% for SBA-15 and 5% and 10% for ETS-10, respectively.

15.
Toxics ; 11(4)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37112530

RESUMO

The dose-dependent effects of single metals (Zn, Ni, and Cu) and their combinations at steady time-actions on the cell viability of the bacteria Shewanella xiamenensis DCB 2-1, isolated from a radionuclide-contaminated area, have been estimated. The accumulation of metals by Shewanella xiamenensis DCB 2-1 in single and multi-metal systems was assessed using the inductively coupled plasma atomic emission spectroscopy. To estimate the response of the bacteria's antioxidant defense system, doses of 20 and 50 mg/L of single studied metals and 20 mg/L of each metal in their combinations (non-toxic doses, determined by the colony-forming viability assay) were used. Emphasis was given to catalase and superoxide dismutase since they form the primary line of defense against heavy metal action and their regulatory circuit of activity is crucial. The effect of metal ions on total thiol content, an indicator of cellular redox homeostasis, in bacterial cells was evaluated. Genome sequencing of Shewanella xiamenensis DCB 2-1 reveals genes responsible for heavy metal tolerance and detoxification, thereby improving understanding of the potential of the bacterial strain for bioremediation.

16.
Materials (Basel) ; 16(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36676589

RESUMO

Selenium nanoparticles are attracting the attention of researchers due to their multiple applications, including medicine. The biosynthesis of selenium nanoparticles has become particularly important due to the environmentally friendly character of the process and special properties of the obtained particles. The possibility of performing the biosynthesis of selenium nanoparticles via the living culture of Arthrospira platensis starting from sodium selenite was studied. The bioaccumulation capacity of the culture, along with changes in the main biochemical parameters of the biomass, the ultrastructural changes in the cells during biosynthesis and the change in the expression of some genes involved in stress response reactions were determined. Protein, lipid and polysaccharide fractions were obtained from the biomass grown in the presence of sodium selenite. The formation of selenium nanoparticles in the protein fraction was demonstrated. Thus, Arthrospira platensis culture can be considered a suitable matrix for the biosynthesis of selenium nanoparticles.

17.
Artigo em Inglês | MEDLINE | ID: mdl-36673692

RESUMO

Chemical analysis was performed on sediment core samples collected from three salt lakes, Amara Lake, Caineni Lake, and Movila Miresii Lake, located in the northeast of the Romanian Plain. The concentration of 10 main elements, 6 heavy metals (HMs), 8 rare earth elements (REEs), and 10 trace elements (TEs)-determined using neutron activation analysis (NAA)-showed variability dependent on the depth sections, lake genesis and geochemical characteristics (oxbow, fluvial harbor/liman and loess saucer type). The assessment of pollution indices (contamination factor, pollution load index, geoaccumulation index, and enrichment factor) highlighted low and moderate degrees of contamination for most of the investigated elements. Principal component analysis (PCA) extracted three principal components, explaining 70.33% (Amara Lake), 79.92% (Caineni Lake), and 71.42% (Movila Miresii Lake) of the observed variability. The principal components extracted were assigned to pedological contribution (37.42%-Amara Lake, 55.88%-Caineni Lake, and 15.31%-Movila Miresii Lake), salts depositions (due to the lack of a constant supply of freshwater and through evaporation during dry periods), atmospheric deposition (19.19%-Amara Lake, 13.80%-Caineni Lake, and 10.80%-Movila Miresii Lake), leaching from soil surface/denudation, rock weathering, and mixed anthropogenic input (e.g., agricultural runoff, wastewater discharges) (13.72%-Amara Lake, 10.24%-Caineni Lake, and 45.31%-Movila Miresii Lake).


Assuntos
Metais Pesados , Poluentes Químicos da Água , Lagos , Monitoramento Ambiental , Romênia , Poluentes Químicos da Água/análise , Sedimentos Geológicos/análise , Metais Pesados/análise , China , Medição de Risco
18.
Microorganisms ; 10(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36363702

RESUMO

Rhenium is a scarce and highly important metal for industry and technology. In the present study, the cyanobacterium Arthrospira platensis (Spirulina) was used to remove rhenium and related elements (Mo and Cu) from mono- and polymetallic synthetic effluents. Metal ions in different concentrations were added to the culture medium on the first, third, and fifth days of biomass growth, and their uptake by the biomass was traced using ICP-AES technique. The accumulation of rhenium in the biomass was dependent on the chemical composition of the effluents, and the highest uptake of 161 mg/kg was achieved in the Re-Cu system. The presence of rhenium, copper, and molybdenum affected the productivity of Spirulina biomass and its biochemical composition (proteins, carbohydrates, lipids, phycobiliproteins, the content of chlorophyll α and ß-carotene). With the growth of biomass in the presence of rhenium or rhenium and molybdenum, a pronounced increase in productivity and protein content was observed. The presence of copper in systems has a negative effect on biomass productivity and biochemical composition. Arthrospira platensis may be of interest as a bioremediator of rhenium-containing effluents of various chemical compositions.

19.
Artigo em Inglês | MEDLINE | ID: mdl-36232178

RESUMO

To determine the nature and origin of the unconsolidated bottom sediments, as well as to demonstrate and quantify the presence of Presumably Contaminating Elements (PCE) in the Serbian Danube River, as a novelty, the mass fractions on nine major elements as oxides-SiO2, TiO2, Al2O3, FeO, MnO, MgO, CaO, Na2O, and K2O, as well as Sc, V, Cr, Co, Ni, Cu, Zn, As, Rb, Sr, Zr, Sb, Cs, Ba, La, Hf, Ta, W, Th, and U were determined by Instrumental Neutron Activation Analysis (INAA) in 13 sediment samples collected between Belgrade and Iron Gate 2 dam. INAA was chosen for its ability to perform elemental analysis without any preliminary sample treatment that could introduce systematic errors. The distribution of major elements was relatively uniform, with the sampling locations having less influence. Concerning the trace elements, excepting the PCE Cr, Ni, Cu, Zn, As, and Sb, their distributions presented the same remarkable similarity to the Upper Continental Crust (UCC), North American Shale Composite (NASC), Average Bottom Load (ABL), and Average Dobrogea Loess (AVL), and were in good concordance with the location of the Serbian Danube River in the Pannonian Plain. In the case of considered PCE, both Enrichment Factor and Pollution Load Index showed values higher than the pollution threshold, which pointed towards a significant anthropogenic contamination, and rising concern to what extent the water quality and biota could be affected.


Assuntos
Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos/análise , Ferro/análise , Óxido de Magnésio/análise , Metais Pesados/análise , Rios , Sérvia , Dióxido de Silício/análise , Oligoelementos/análise , Poluentes Químicos da Água/análise
20.
Materials (Basel) ; 15(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36079481

RESUMO

Erbium belongs to rare earth elements critical for industry, especially nuclear technology. Cyanobacteria Arthospira platensis was used for Er(III) removal from wastewater by applying biosorption and bioaccumulation processes. The influence of pH, Er(III) concentration, contact time and temperature on the biosorption capacity of Arthospira platensis was determined. The optimal conditions for Er(III) removal were defined as pH 3.0, time 15 min and temperature 20 °C, when 30 mg/g of Er(III) were removed. The kinetics of the process was better described by the pseudo-first-order model, while equilibrium fitted to the Freundlich model. In bioaccumulation experiments, the uptake capacity of biomass and Er(III) effect on biomass biochemical composition were assessed. It was shown that Er(III) in concentrations 10-30 mg/L did not affect the content of biomass, proteins, carbohydrate and photosynthetic pigments. Its toxicity was expressed by the reduction of the lipids content and growth of the level of malonic dialdehyde. Biomass accumulated 45-78% of Eu(III) present in the cultivation medium. Therefore, Arthospira platensis can be considered as a safe and efficient bioremediator of erbium contaminated environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...